Cite this article

Soares de Oliveira-Szejnfeld P, Levine D, Melo A, Amorim M, Batista A, Chimelli L, Tanuri A, Aguiar R, Malinger G, Ximenes R, Robertson R, Szejnfeld J and Tovar-Moll F. 'Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnatally.'. Radiology August 23, 2016; /:161584 DOI: 10.1148/radiol.2016161584, PUBMED: 27552432

Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnatally.

August 23, 2016 | Radiology

DOI: 10.1148/radiol.2016161584, PUBMED: 27552432


Purpose To document the imaging findings associated with congenital Zika virus infection as found in the Instituto de Pesquisa in Campina Grande State Paraiba (IPESQ) in northeastern Brazil, where the congenital infection has been particularly severe. Materials and Methods From June 2015 to May 2016, 438 patients were referred to the IPESQ for rash occurring during pregnancy or for suspected fetal central nervous system abnormality. Patients who underwent imaging at IPESQ were included, as well as those with documented Zika virus infection in fluid or tissue (n = 17, confirmed infection cohort) or those with brain findings suspicious for Zika virus infection, with intracranial calcifications (n = 28, presumed infection cohort). Imaging examinations included 12 fetal magnetic resonance (MR) examinations, 42 postnatal brain computed tomographic examinations, and 11 postnatal brain MR examinations. Images were reviewed by four radiologists, with final opinion achieved by means of consensus. Results Brain abnormalities seen in confirmed (n = 17) and presumed (n = 28) congenital Zika virus infections were similar, with ventriculomegaly in 16 of 17 (94%) and 27 of 28 (96%) infections, respectively; abnormalities of the corpus callosum in 16 of 17 (94%) and 22 of 28 (78%) infections, respectively; and cortical migrational abnormalities in 16 of 17 (94%) and 28 of 28 (100%) infections, respectively. Although most fetuses underwent at least one examination that showed head circumference below the 5th percentile, head circumference could be normal in the presence of severe ventriculomegaly (seen in three fetuses). Intracranial calcifications were most commonly seen at the gray matter-white matter junction, in 15 of 17 (88%) and 28 of 28 (100%) confirmed and presumed infections, respectively. The basal ganglia and/or thalamus were also commonly involved with calcifications in 11 of 17 (65%) and 18 of 28 (64%) infections, respectively. The skull frequently had a collapsed appearance with overlapping sutures and redundant skin folds and, occasionally, intracranial herniation of orbital fat and clot in the confluence of sinuses. Conclusion The spectrum of findings associated with congenital Zika virus infection in the IPESQ in northeastern Brazil is illustrated to aid the radiologist in identifying Zika virus infection at imaging. (©) RSNA, 2016 Online supplemental material is available for this article.

Read full article